

Salient Visualization

Amitabh Varshney

Department of Computer Science University of Maryland at College Park http://www.cs.umd.edu/~varshney

The Biggest Challenge of Our Era

Data and Information Overload

Data produced during 2003 – 2005 exceeds all of the

previously created data by mankind

... and 90% of the new data is digital

Acquisition:

- Audioscapes, Image and Video Archives
- GIS (satellites to low-flying planes), Laser Scanners
- Medical Imaging (CT, MRI, fMRI, ...)
- Molecular Imaging (NMR, Crystallography, Microarrays, ...)

Generation:

- Meteorology: Atmospheric simulation and prediction
- Biology: Molecular dynamics, protein docking
- Space Sciences: Solar wind turbulence, micro-gravity fluid mechs.
- High-Energy Physics: Multi-scale Plasma Dynamics

Maryland Chimera Project

- 15 Compute Nodes and 13 Render Nodes
- 4 Nodes for Scheduling and File Server
- 1 User node (keyboard, terminal)
- Each node has:
 - Dual 3GHz Intel Xeon CPUs
 - NVIDIA GeForce 7800 GTX GPU
 - 8 GB RAM
 - 100 GB Disk
- Parallel fileserver has 10 TB disk storage

Network interconnect: 10 Gbps Topspin

Chimera Project: Tiled Display

Total resolution: 50 mega pixels (5 x 5 array of 1920 x 1200 Dell 24" LCD screens) Ultrasonic air-mouse interface

Multiresolution Representations

3D GRAPHICS

David LUEBKE Martin REDDY Jonathan D. COHEN Amitable VARSHNEY Benjamin WATSON Robert HUEBNER FOREWORD BY FREDERICK P. BROOKS, JR.

http://www.lodbook.com

The Last Inch Problem

Data complexity is rising

Computing capabilities are increasing

Human perceptual and cognitive machinery remains largely unchanged

Image courtesy of Howard Hughes Medical Institute

Abstraction

Can we decouple the visual representation from the physical representation?

Egyptian	Protosinaitic	Phoenician	Early Greek	Greek	Latin
	Ø	4	A	Α	A
H	×	F	F	E	Е
Z	2	4	7	Ν	N
0	0	0	o	0	0

Yes, but how about just visual depiction ...

Arrows in Visual Depiction

by Bernard Forest de Belidor in Architecture hydraulique, 1737

Arrows in Visual Depiction

Visual Abstractions

- Arrows are a convenient visual abstraction of motion
- How about visual abstractions of geometry?

Model of Myoglobin made by A. A. Barker (Cambridge, UK) in 1966 for £210. Currently owned by Dr. Britton Chance

Visual Abstractions of Proteins

Myoglobin Representations

Abstraction first proposed by Jane Richardson in 1981 (Adv. In Prot. Chem.)

Summary (thus far ...)

 Decoupling physical realism from visual representation can be very powerful

 Identify what is important for the task (Saliency)

Emphasize salient attributes

Salient Visualization: Geology

- Observed stratification of rocks during his work on coal mines and later canals
- The *order* of rocks were the same
- The depths at which they occurred differed
- Hypothesized a 3D structure of layers at various slopes beneath the Earth's surface

William Smith (1769 - 1839)

 Used measurements along canals, mine shafts, and extrapolated...

Salient Visualization: Geology

- The first systematic spatial study of various rock strata
- Used fossil types in various layers of rocks to fine-tune
- Created the *first* geological map in 1815
- Visually persuaded the world of the innate structure of the Earth; immensely influential in:
 - Geology
 - Natural History and Biology
 - Mining coal, oil, iron, diamond, platinum, silver, ...

Salient Visualization: GeoPhysics

Magnetic Profile and Bathymetry data from USS Eltanin, track 19

Salient Visualization: GeoPhysics

• The first visual proof of symmetry of magnetic anomalies

• Visually persuasive evidence leading to the acceptance of

the theory of sea-floor spreading

Salient Visualization: Music

Beethoven's Für Elise

Lorenz (1963) 3-variable model

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = rx - y - xz$$

$$\frac{dz}{dt} = xy - bz$$

Growth

Has two regimes and the transition between them is *chaotic*

Definition of Chaos

When the Present determines the Future, **but**the Approximate Present does not

Approximately determine the Future

Lorenz, March 2006 89 years old

Salient Visualization: Chaos

Kalnay asked the interns to mark x(t) with the bred vector growth and was surprised to see the dramatic results:

Salient Visualization: Chaos

Regime change: The presence of red stars (fast BV growth) indicates that the next orbit will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short.

Several red stars: the next regime will be long lasting.

General Observations

- Common amongst examples
 - Carefully hand-crafted
 - Took immense effort
 - One of a kind

- General principles:
 - Results convey important elements in a clean and visually consistent way
 - They emphasize salient features and suppress others
 - They are parsimonious visualizations and they make the few resources work extra hard (space, color, ...)

Visual Computing

- The process of transforming data to images involves
 - Dimension explosion add normals, reflectance, camera, lighting, transfer functions, ...
 - Dimension reduction incorporate everything to give us colors and their locations
- How is data salience propagated through such a pipeline?
 - Are we certain it survives?
- Every communication has a message
 - And every point and every voxel a default importance
- How can we preserve data salience in rendered images?

Visual Computing

- Visual attention
 - How does one draw visual attention?

- Saliency
 - How does one compute saliency?

Directing Visual Attention by Light

Visual Continuity & Consistency

- Shots often composited from multiple takes
- Lighting is painstakingly made consistent
- Consistent lighting considered important for visual continuity and storytelling

Jurassic Park, © Universal Studios

Is Consistent Lighting Necessary?

- Nature has one dominant light source
- Evolution might have endowed us with an ability to discern inconsistency in illumination
- Just as it has inconsistency in perspective

The Presentation in the Temple by Gentile da Fabriano (1423)

Illumination Inconsistencies

Recent research suggests that illumination consistency is *not* resolved at the low-level

human vision

Find the cube lit inconsistently with respect to others:

On average, users take 8 seconds to answer and are then wrong 30% of the time

Illumination inconsistencies are not perceptually salient Ostrovsky, Sinha, Cavanagh, Perception 2006

Illumination Inconsistencies

Ostrovsky, Sinha, Cavanagh, Perception 2006

Discrepant Lighting in Art

The Music Lesson by Jan Vermeer

Discrepant Lighting

- Scientific visualization need not strive for photorealism
- Discrepant lighting can yield compelling results

Light Collages: Basic Idea

Allow local lighting parameters to be defined independently at local regions

Light Collages Overview

- Segmentation
- Light Placement and Assignment to patches
- Silhouette Enhancement
- Proximity Shadows

Results - Pelvis & Skull

(a) Uniform 4 lights

(b) Light Collages: with 4 lights

(c) Light Collages: Silhouettes+ Shadows

Results - Manuscript

Manuscript courtesy of Paul Debevec, USC and XYZ RGB Inc.

Visual Attention

A wealth of information creates a poverty of attention and a need to allocate it efficiently.

Herbert Simon

A way of seeing is also a way of not seeing – a focus on object A involves a neglect of object B

Kenneth Burke

Visual Attention

- Where we look has significant implications for:
 - what we perceive
 - how we interpret
 - how we act
- Visual attention is the primary filter by which we can cope with our immense sensory bandwidth
 - Retinal information is too vast and most of it has no survival value
- Eye-tracking can quantify overt visual attention

What Controls Visual Attention

Bottom-up Image Properties (task independent)

Top-down Semantics and Task-driven Properties

Yarbus 1967

Related Work

- Image saliency maps
 - Tsotsos et al. 95, Milanese et al. 94, Itti et al. 98, Rosenholtz 99

Itti et al. PAMI 98

- Applications: compression and cropping
 - Privitera and Stark 99, Chen et al. 03, Suh et al. 03

Without cropping

Saliency-based cropping

Suh et al. UIST 03

Saliency has a 3D Component

3D features pop out quickly

2D features not pre-attentive

Based on Enns and Rensink 90

Distinctive 3D structure pops out pre-attentively

Mesh Saliency

Saliency should find regions different from surrounding context

Curvature

Saliency

Saliency should capture interesting features at all meaningful scales

Saliency at a large object scale

Saliency at a small object scale

Saliency Computation Overview

Center-Surround Operator

Gaussian-weighted average is:

$$G(\mathbf{C}(v),\sigma) = \frac{\sum_{x \in N(v,2\sigma)} \mathbf{C}(x) \exp[-\|x-v\|^2 / (2\sigma^2)]}{\sum_{x \in N(v,2\sigma)} \exp[-\|x-v\|^2 / (2\sigma^2)]}$$

C (x): Mean curvature at vertex v

Gaussian Weights

Center-Surround Operator

Saliency map at each scale *i* is:

$$S_{i}(v) = G(C(v), \sigma_{i}) - G(C(v), 2\sigma_{i})$$

 $S_{i}(v) = G(C(v), \sigma_{i}) - G(C(v), 2\sigma_{i})$ $\sigma_{i} \in \{2\varepsilon, 3\varepsilon, 4\varepsilon, 5\varepsilon, 6\varepsilon\}, \varepsilon = 0.3\% \text{ of the diagonal of the object}$

Center-Surround Operator

Saliency map at each scale *i* is:

$$S_{i}(v) = |G(C(v), \sigma_{i}) - G(C(v), 2\sigma_{i})|$$

$$\sigma_i \in \{2\varepsilon, 3\varepsilon, 4\varepsilon, 5\varepsilon, 6\varepsilon\}$$

 $\varepsilon = 0.3\%$ of the diagonal of the object

Mesh Saliency Results

Validation of Mesh Saliency

Fixations of 18 users over first 3 seconds

(c) Human Eye Fixations

Kim, Varshney, Jacobs, Guimbretiere, ACM Transactions on Applied Perception, 2008 (under review)

Saliency Applications

Simplification: Scale the quadric error by the saliency to preserve more triangles for salient regions

Cyberware Male

Mesh Saliency

Viewpoint Selection: Find the viewpoint that maximizes the sum of the visible saliency

Gradient-descent-based optimization

Viewpoint Selection

Curvature

Saliency

Sum of Sum of visible curvature saliency

Preserving Salience

 Transfer Functions: Modulate opacity/transfer functions [Groeller et al. TVCG 04 –VisSym 07]

Rendering Stylization: [Kim and Varshney]

Original

Suggestive Contours

SC weighted by Saliency

Visual Salience in Art

Visual Salience in Art

Salient Visualization

- Saliency Field
- Enhancement Operators
- Emphasis Field
- Saliency Enhancement
- Saliency-enhanced Volume Rendering
- Validation by eye-tracking based user study

Emphasis Field Computation

Given a saliency field, can we design some scalar field that will generate it?

Unknown

- Known ___
- Mesh Saliency: $\mathcal{D}(v) = G(\mathcal{C}, v, \sigma) G(\mathcal{C}, v, 2\sigma)$
- We introduce the concept of an Emphasis Field

 to define a Saliency Field

 in a volume

$$(v) = G(\mathcal{E}, v, \sigma) - G(\mathcal{E}, v, 2\sigma)$$

Known
Unknown

Emphasis Field Computation

Expressible as simultaneous linear equations

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} \begin{bmatrix} \mathscr{E}(v_1) \\ \mathscr{E}(v_2) \\ \vdots \\ \mathscr{E}(v_n) \end{bmatrix} = \begin{bmatrix} \mathscr{S}(v_1) \\ \mathscr{S}(v_2) \\ \vdots \\ \mathscr{S}(v_n) \end{bmatrix}$$

where c_{ij} is the difference between two Gaussian weights at scale σ and at scale 2σ for a voxel v_j from the center voxel v_i

Emphasis Field Computation

- We like to use enhancement operators at multiple scales σ_i
 - Let \mathcal{E}_i be the emphasis field at scale σ_i
 - Compute this by applying the enhancement operator $C_{\rm i}^{\text{--}1}$ on the saliency field ${\mathscr S}$
 - Final emphasis field is computed as the summation of $\mathscr{E}_{\mathbf{i}}$

Salient Visualization - Brightness

T Cardiniscia, and Stated e Enformation in ent

Teadinainanteningnt

User Study

- Validated results by an eye-tracking-based user study
- Eye-tracker ISCAN ETL-500
 - Records eye movements at 60Hz

- Hypotheses: The eye fixations increase over the region of interest (ROI) in a volume by the saliency-guided enhancement compared to
 - the traditional volume visualization (Hypothesis H1)
 - the Gaussian-based enhancement (Hypothesis H2)

User Study – Result I

Gaussia Station Points

With Fixation Points

Staticition gluidal drack Recordenie out
With Fixation Points

User Study – Result II

Saliency-guided Enhancement
With Fixation Points

Gaussian-based Enhancement
With Fixation Points

Data Analysis

The percentage of fixations on the ROI for the original, Gaussian-enhanced, and Saliency-enhanced visualizations

Salient Visualization: Geometry

- Seen the use of luminance, chrominance, texture, ...
- Can geometry be altered to draw visual attention?
- Advantages:
 - Complementary to others
 - Earliest in the visual computing pipeline
 - View-independent effects
 - Rendering Stylizations

Salient Visualization: Geometry

Persuading Visual Attention through Geometry, Kim and Varshney, IEEE TVCG, June 2008

Salient Visualization: Geometry

Original

Altered

Rendering Stylizations

Persuading Visual Attention through Geometry, Kim and Varshney, IEEE Transactions on Visualization and Computer Graphics, June 2008

Concluding Remarks

- Computational models that mimic perceptual salience for 3D objects
- Data is always sacrosanct but visualization is never neutral
 - View location, view orientation, lighting (number, and types), reflectance, transfer functions, ...
- Every communication has a message
 - Whether intentional or not
- Methods to identify, preserve, and enhance visual saliency

Salient Visualization

- Define Salient
 - Human
 - Al assistant
- Compute Data Salience
 - Features
 - Patterns
 - Coherence
 - Interactions
- Preserve and Enhance it through the Visual Computing pipeline:
 - Camera
 - Geometry / Data Representation
 - Transfer Functions
 - Lighting
 - Texture, Color, Glyphs
- Validate in final rendering

Concluding Remarks

- Every communication genre employs its distinct rhetorics
 - Movies vs documentaries
 - Posters vs newspapers
 - Photography vs art
- Towards a Language of 3D Visual Communication
 - Data: nouns
 - Visual Salience: adjectives
 - Guiding Visual Attention: verbs
- Could be the beginnings of a new and rich genre of visual communication

Or it could go the way of personal air cars ...

Acknowledgements

David Dao
Youngmin Kim
Chang Ha Lee
Rob Patro
Derek Juba

Joseph Ja'Ja'
Dianne O'Leary
David Jacobs

NSF ARL NOAA DARPA IARPA

Communication – Language vs Visual

- *Language:* linear, apprehended slowly, systematic processing
- *Images:* Comprehended wholistically, instantaneously, emotional processing
- Images (or image-evoking language) are powerful, precisely because they provide superior opportunities to dominate the *field of consciousness*

Emphasis Field in Practice

- A system of simultaneous linear equations in n variables
 - Generally, can handle arbitrary saliency regions and values
 - Computationally expensive: $O(kn^2)$ or $O(n^3)$
- Alleviate this by solving a 1D system of equations
 - Given a saliency field
 - Solve 1D system of equation multiple scales and sum ther
 - Approximate results using piecewise polynomial radial functions [Wendland 1995]

- Interpret results to be along the radial dimension
 - Assume spherical regions of interest (ROI)

Saliency-guided Enhancement

- Previous Gaussian-based Enhancement of a Volume
 - Volume Illustration [Rheingans and Ebert TVCG 01]
 - Importance-based regional enhancement

- Various rendering stylizations and effects possible
 - Brightness
 - Saturation

Preserving Salience

- Draw viewer attention in several ways
- Obtrusive methods like arrows or flashing pixels

- Distracts the viewer from exploring other regions
- Principles of visual perception used by artists and illustrators
 - Gently guide to regions that they wished to emphasize